Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004844

RESUMO

Exploiting the terahertz (THz) part of the electromagnetic spectrum is attracting attention in various scientific and applied disciplines worldwide. THz technology has also revealed its potential as an effective tool for gas analysis in astronomy, biomedicine and chemical analysis. Recently, it has also become important in environmental applications for monitoring hazardous and toxic gases in the atmosphere. This paper gives an overview of THz gas detection analytical methods for environmental and biomedical applications, starting with a brief introduction to THz technology and an explanation of the interaction of THz radiation with gaseous species and the atmosphere. The review focuses on several gaseous species and groups of air pollutants that have been or can be analysed by THz spectrometry. The review concludes that different but complementary THz detection methods allow unique detection, identification and quantification of gaseous and particulate air pollutants with high selectivity, specificity and sensitivity. THz detection methods also allow further technological improvements and open new application possibilities.

2.
Adv Sci (Weinh) ; 10(34): e2304767, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867211

RESUMO

In the development of new organic crystals for nonlinear optical and terahertz (THz) applications, it is very challenging to achieve the essentially required non-centrosymmetric molecular arrangement. Moreover, the resulting crystal structure is mostly unpredictable due to highly dipolar molecular components with complex functional substituents. In this work, new organic salt crystals with top-level macroscopic optical nonlinearity by controlling the van der Waals volume (VvdW ), rather than by trial and error, are logically designed. When the VvdW of molecular ionic components varies, the corresponding crystal symmetry shows an observable trend: change from centrosymmetric to non-centrosymmetric and back to centrosymmetric. All non-centrosymmetric crystals exhibit an isomorphic P1 crystal structure with an excellent macroscopic second-order nonlinear optical response. Apart from the top-level macroscopic optical nonlinearity, new organic crystals introducing highly electronegative fluorinated substituents with strong secondary bonding ability show excellent performance in efficient and broadband THz wave generation, high crystal density, high thermal stability, and good bulk crystal growth ability.

3.
Adv Sci (Weinh) ; 9(24): e2201391, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35839468

RESUMO

Solid-state molecular phonons play a crucial role in the performance of diverse photonic and optoelectronic devices. In this work, new organic terahertz (THz) generators based on a catechol group that acts as a phonon suppressing intermolecular adhesive are developed. The catechol group is widely used in mussel-inspired mechanical adhesive chemistry. Newly designed organic electro-optic crystals consist of catechol-based nonlinear optical 4-(3,4-dihydroxystyryl)-1-methylpyridinium (DHP) cations and 4-(trifluoromethyl)benzenesulfonate anions (TFS), which both have multiple interionic interaction capability. Interestingly, compared to benchmark organic crystals for THz generators, DHP-TFS crystals concomitantly achieve top level values of the lowest void volume and the highest crystal density, resulting in an exceptionally small amplitude of solid-state molecular phonons. Simultaneously achieving small molecular phonon amplitude, large optical nonlinearity and good phase matching at infrared optical pump wavelengths, DHP-TFS crystals are capable of generating broadband THz waves of up to 16 THz with high optical-to-THz conversion efficiency; one order of magnitude higher than commercial inorganic THz generators.

4.
J Environ Manage ; 315: 115118, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472828

RESUMO

Construction and demolition waste are one of the largest waste streams generated in the EU by volume. They consist of materials such as concrete, bricks, gypsum, wood, glass, metals, foams, plastics, solvents, asbestos, asphalt, and excavated soil. Nowadays, many of them can be recycled, some even endlessly. This research attempts to contribute to the non-destructive characterization of such a waste with a novel method using terahertz radiation. By combining terahertz imaging and spectroscopy, we performed analytical characterization of selected building materials. The results demonstrate that terahertz technology allows an inside view into some of the non-conducting building materials. THz imaging can detect and visualize the organic solvents in the insulation material, which are often disposed of together with construction and demolition waste. It can also visualize the content of foreign objects or hazardous and toxic substances, which is important for their separation in the recyclate according to the type of the material. Furthermore, THz spectra reveal some spectral lines that can differentiate between different plastics and polymers within the frequency range of 1.0-4.5 THz due to different material structures and chemical compositions. Such results significantly contribute to the decision of which product meets all the standards, which can be returned to the production process due to irregularities or may be disposed of as waste. The only way to reduce construction and demolition waste in the future is to encourage the adoption of innovative technologies like terahertz spectroscopy in combination with traditional methods. This approach can bring some changes also to the construction design philosophy toward more sustainable buildings with minimum end-of-life demolition.


Assuntos
Indústria da Construção , Gerenciamento de Resíduos , Indústria da Construção/métodos , Materiais de Construção , Resíduos Industriais/análise , Plásticos , Reciclagem , Solventes , Tecnologia
5.
Opt Lett ; 44(19): 4881-4884, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568466

RESUMO

A laser supercontinuum is generated by cross-phase modulation (XPM) driven by an intense terahertz (THz) field in organic crystal OHQ-N2S. In this highly nonlinear medium, the THz electric field induces a time-varying optical phase modulation, which causes a spectacular spectral broadening and shifting of a co-propagating near-infrared laser pulse. The effect is enabled by the large electro-optic coefficient, the low absorption, and the good velocity matching between the laser and the THz pulse over the OHQ-N2S crystal thickness. The XPM occurs when the THz field is aligned along the polar axis of the OHQ-N2S. The results display a promising pathway for ultrafast control of the spectral and temporal properties of laser pulses using THz stimuli.

6.
Sensors (Basel) ; 18(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477140

RESUMO

There is a need for fast and reliable quality and authenticity control tools of pharmaceutical ingredients. Among others, hormone containing drugs and foods are subject to scrutiny. In this study, terahertz (THz) spectroscopy and THz imaging are applied for the first time to analyze melatonin and its pharmaceutical product Circadin. Melatonin is a hormone found naturally in the human body, which is responsible for the regulation of sleep-wake cycles. In the THz frequency region between 1.5 THz and 4.5 THz, characteristic melatonin spectral features at 3.21 THz, and a weaker one at 4.20 THz, are observed allowing for a quantitative analysis within the final products. Spectroscopic THz imaging of different concentrations of Circadin and melatonin as an active pharmaceutical ingredient in prepared pellets is also performed, which permits spatial recognition of these different substances. These results indicate that THz spectroscopy and imaging can be an indispensable tool, complementing Raman and Fourier transform infrared spectroscopies, in order to provide quality control of dietary supplements and other pharmaceutical products.


Assuntos
Melatonina/análise , Espectroscopia Terahertz/métodos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Talanta ; 143: 169-177, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26078145

RESUMO

In different industrial applications, several strictly defined parameters of calcium-based microfillers such as average particle size, particle size distribution, morphology, specific surface area, polymorphism and chemical purity, play a key role in the determination of its usefulness and effectiveness. Therefore, an analytical tool is required for rapid and non-destructive characterization of calcium-based microfillers during the synthesis process or before its use in a further manufacturing process. Since spectroscopic techniques are preferred over microscopy and thermogravimetry, particularly due to its non-destructive nature and short analysis time, we applied terahertz (THz) spectroscopy to analyse calcite microfillers concentration in polymer matrix, its granulation and chemical treatment. Based on the analysis of peak absorbance amplitude, peak frequency position, and the appearance of additional spectral features, quantitative and qualitative analysis was successfully achieved. In addition, THz imaging was also applied for both quantitative and qualitative analysis of calcium-based microfillers. By using spatial distribution map, the inhomogeneity in concentration of calcium carbonate in polymer matrix was characterized. Moreover, by THz spectroscopy and imaging different calcium compounds were detected in binary mixtures. Finally, we demonstrated that the applied spectroscopic technique offers valuable results and can be, in combination with other spectroscopic and microscopic techniques, converted to a powerful rapid analytical tool.

8.
Appl Opt ; 54(14): 4495-502, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967507

RESUMO

Terahertz time-domain spectroscopy and imaging is used to study the effects of various hiding techniques of spectral features of drug and explosive simulants in combination with different paper and textile barriers. Results show that rapid detection and identification of concealed simulants is possible in the frequency range from 1.5 to 4.0 THz by using an organic-crystal-based terahertz time-domain system and the spectral peak analysis method.


Assuntos
Estimulantes do Sistema Nervoso Central/análise , Substâncias Explosivas/análise , Detecção do Abuso de Substâncias/instrumentação , Espectroscopia Terahertz/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
J Pharm Sci ; 104(6): 1909-1918, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25776345

RESUMO

A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms.


Assuntos
Anti-Inflamatórios não Esteroides/química , Piroxicam/química , Varredura Diferencial de Calorimetria , Cristalização , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...